Path Planning for a Statically Stable Biped Robot Using PRM and Reinforcement Learning
نویسندگان
چکیده
In this paper path planning and obstacle avoidance for a statically stable biped robot using PRM and reinforcement learning is discussed. The main objective of the paper is to compare these two methods of path planning for applications involving a biped robot. The statically stable biped robot under consideration is a 4-degree of freedom walking robot that can follow any given trajectory on flat ground and has a fixed step length of 200 mm. It is proved that the path generated by the first method produces the shortest smooth path but it also increases the computational burden on the controller, as the robot has to turn at almost all steps. However the second method produces paths that are composed of straightline segments and hence requires less computation for trajectory following. Experiments were also conducted to prove the effectiveness of the reinforcement learning based path planning method.
منابع مشابه
Stable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation
In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...
متن کاملPath Planning for a Robot Manipulator based on Probabilistic Roadmap and Reinforcement Learning
The probabilistic roadmap (PRM) method, which is a popular path planning scheme, for a manipulator, can find a collision-free path by connecting the start and goal poses through a roadmap constructed by drawing random nodes in the free configuration space. PRM exhibits robust performance for static environments, but its performance is poor for dynamic environments. On the other hand, reinforcem...
متن کاملMotion Planning for Humanoid Robots Under Obstacle and Dynamic Balance Constraints
We present an approach to path planning for humanoid robots that computes dynamically-stable, collision-free trajectories from full-body posture goals. Given a geometric model of the environment and a statically-stable desired posture, we search the configuration space of the robot for a collision-free path that simultaneously satisfies dynamic balance constraints. We adapt existing randomized ...
متن کاملPRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning
We present PRM-RL, a hierarchical method for long-range navigation task completion that combines samplingbased path planning with reinforcement learning (RL) agents. The RL agents learn short-range, point-to-point navigation policies that capture robot dynamics and task constraints without knowledge of the large-scale topology, while the sampling-based planners provide an approximate map of the...
متن کاملBiped Balance Control by Reinforcement Learning
This work studied biped walking with single (one-leg) support and balance control using reinforcement learning. The proposed Q-learning algorithm makes a robot learn to walk without any previous knowledge of dynamics model. This balance control with single support shifts the Zero Moment Point (ZMP) of the robot to a stable region over walking sequences by means of learned gestures. Hence, the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 47 شماره
صفحات -
تاریخ انتشار 2006